34.3 Logical Controlled - NOT Gate by braiding Consider CNOT gate between primal (control) and dual (target) defect pair qubits Z (2D) This operation transforms the X (C,) operator to $X(\overline{c_i}) \sim X(\overline{c_i})X(\overline{D})$ Similarly, one can induce a time evolution of the logical 2 operator by braiding: 9D $\rightarrow Z(c_i) \sim Z(D)Z(q)$ Cı

On the other hand Z(D) and X(DD) are invariant under this operation. To summarize, we get $Z(D) \longrightarrow Z(D)$ $Z(c_i) \longrightarrow Z(c_i) Z(D)$ $X(\partial \overline{D}) \longrightarrow X(\partial \overline{D})$ $\chi(\xi) \longrightarrow \chi(z_0) \chi(\partial D)$ This is a CNOT-gate! Recall : $\Lambda_{c_1t}(\mathbf{X}) X_c \Lambda_{c_1t}(\mathbf{X}) = X_c X_t$ $\Lambda_{C,t}(X) X_{t} \Lambda_{C,t}(X) = X_{t}$ $\Lambda_{c,t}(\mathbf{X}) \mathcal{Z}_c \Lambda_{c,t}(\mathbf{X}) = \mathcal{Z}_c$ $\Lambda_{c,t}(X) Z_t \Lambda_{c,t}(X) = Z_c Z_t$ - description limited as we are dealing with "Abelian" defect

§5. Kitaev's Hoveycomb lattice model
S5.1 Introducing the honeycomb
attice model
The spin lattice Hamiltonian

$$H = -\frac{1}{3} \times \sum_{x \text{ links}} \sigma_i^x \sigma_j^x - \frac{1}{3} \sum_{y \text{ links}} \sigma_i^y \sigma_j^y \sigma_j^y (x)$$

 $-\frac{1}{32} \sum_{2 \text{ links}} \sigma_i^z \sigma_j^z - K \sum_{(ij),K} \sigma_j^x \sigma_j^y \sigma_x^y$
 $-\frac{1}{32} \sum_{2 \text{ links}} \sigma_j^z \sigma_j^z - K \sum_{(ij),K} \sigma_j^x \sigma_y^y \sigma_x^y$
effective una justic
field with
compling K
In the following we take the
 $\frac{1}{3}$ couplings to be all equal: $\frac{1}{3}x = \frac{1}{3}y = \frac{1}{3}e^{-\frac{1}{3}}e^{-\frac{1}$

The Hamiltonian (*) has a local
symmotry . Consider plaquette operators"

$$\widehat{W_p} = \overline{\nabla_1}^* \overline{\nabla_2}^2 \overline{\nabla_3}^2 \overline{\nabla_6}^2$$

→ $\widehat{W_p}^2 = 11$
→ eigenvalues are $w_p = \pm 1$.
Moreover : $[\widehat{w_p}, \widehat{w_p}] = 0 \quad \forall p, p'$
 $[H, \widehat{w_p}] = 0 \quad \forall p$
Since the $\widehat{w_p}$ are conserved quantities,
the Hilbert space 2 of N spins
on a plane → $2^{N/2}$ sectors Z_W
 af dimension $2^{N/2}$
labeled by $w = \{w_p\}$
Majorana fermionization
Goal: bring Hamiltonian (*) to
qua dratic form
Infroduce two fermionic modes for
each spin $\frac{1}{2}$ particle : $a_{i,i}$, and $a_{2,i}$

meaning:

$$|1\rangle = |00\rangle, |1\rangle = |11\rangle$$
with $a_{1}|00\rangle = a_{2}|00\rangle = 0, |11\rangle = a_{1}^{2}a_{2}^{2}|00\rangle$

$$-> faith ful if we restrict to
subspace of ferm. states |2}
satis fying:
D; |2> = |2}
where $D_{1} - (1 - 2a_{1,1}^{2}a_{1,1})(1 - 2a_{2,1}^{2}a_{2,1}) = b_{1}^{2}b_{1}^{2}b_{1}^{2}c_{1}$
Here we can make following
identification:
 $\sigma_{1}^{-\alpha} = ib_{1}^{-\alpha}C_{1} \quad \forall \ \alpha = x_{3}, z \quad (x *)$
 $[D_{1}, \sigma_{1}^{-\alpha}] = 0$
and $i\sigma_{1}^{-\alpha}\nabla_{1}^{-\gamma}\nabla_{2}^{-2} = b_{1}^{-\alpha}b_{1}^{-\beta}b_{1}^{-2}c_{1}^{-2} = 1$.
 \rightarrow satisfies the algebra of Pauli
matrices only if we restrict to
states that belong to χ .
Using the representation $(x*)$, the Hamiltonian
interactions become
 $\sigma_{1}^{-\alpha}\overline{\sigma_{1}}^{-\alpha} = -i\hat{u}_{12}c_{1}c_{1}^{-\alpha}$ and $\sigma_{1}^{-\alpha}\overline{\sigma_{1}}^{-\alpha} = -i\hat{u}_{12}c_{1}c_{1}^{-\alpha}$$$

where

$$\hat{u}_{ij} = ib_i^{\times} b_j^{\times}$$
 "link operators"
with $\alpha = x, y, z$
 \rightarrow antisymmetric Hermitian operators
satisfying
 $\hat{u}_{ij} = -\hat{u}_{ji}, \quad \hat{u}_{ij}^{\perp} = 1, \quad \hat{u}_{ij}^{\perp} = \hat{u}_{ij}$
Restricting the states of the system
to the physical space 2, the Hamiltonian
(x) takes the form
 $H = \frac{1}{4} \sum_{ij} \hat{A}_{ij} \cdot \hat{c}_i \cdot \hat{c}_j,$
 $\hat{A}_{ij} = 2j_{ij} \cdot \hat{u}_{ij} + 2k \sum_{k} \hat{u}_{ik} \cdot \hat{u}_{jk}$
Emerging lattice gauge theory
It can be verified that
 $[H_i, D_i] = 0$
Physical states must satisfy
 $H = H_i > E = h_i, D_i = 12i$
The link operators are local symmetries:
 $[H_i, \hat{u}_{ij}] = 0$
But $\{\hat{u}_{ij}, D_i\} = 0$

-> sectors labeled by eigenvalue
patterns u= [u;;=t] are not
part of Z
On the other hand, plaquette
operators satisfy:
$$\widehat{W}_{p} = \prod_{ij \in p} \widehat{U}_{ij}$$

 $[\widehat{W}_{p}, H] = 0$ and $[\widehat{W}_{p}, D_{i}] = 0$
 \rightarrow eigenvalues [u; = ±1] can be
thought of classical Z gauge field

